UNCLASSIFIED

AD NUMBER ADC012205 **NEW LIMITATION CHANGE** TO Approved for public release, distribution unlimited **FROM** Distribution limited to U.S. Gov't. agencies only; Test and Evaluation; Oct 77. Other requests for this document must be referred to Commanding Officer, Naval Research Lab., Washington, DC 20375. **AUTHORITY** NRL 1tr, 3 Mar 2004

UNCLASSIFIED

AD NUMBER		
ADC012205		
CLASSIFICATION CHANGES		
TO unclassified		
FROM confidential		
AUTHORITY		
31 Dec 1997 per document markings		

THIS PAGE IS UNCLASSIFIED

NRL Memorandum Report 3625

Operator-Interactive Signature Formation for Acoustic Undersea Surveillance Systems

[Unclassified Title]

WILLIAM P. MORROGH

Advanced Projects Group
Acoustics Division

October 1977

NATIONAL SECURITY INFORMATION

"Unauthorized Disclosure Subject to Criminal Sanctions"

FILE COPY

NAVAL RESEARCH LABORATORY Washington, D.C.

CONFIDENTIAL: Classified by NAVELEX (320) Exempt from GDS of E.O. 11632 Ex. Cat. 3, Auto. Declass. Dec. 31, 1997.

CONFIDENTIAL

Distribution limited to U.S. Government Agencies only; test and evaluation; October 1977. Other requisits for this document must be referred to the Commanding Officer, Naval Research Laboratory, Washington, D.C. 20375.

Application of the second

NATIONAL SECURITY INFORMATION

Unauthorized Disclosure Subject to Criminal Sanctions.

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)	
REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS
1. REPORT NUMBER	BEFORE COMPLETING FORM
NRL Memorandum Report 3625	MR-3625)
. TITLE (and Subtitle)	E OF REPORT & PERIOD COVER
OPERATOR INTERACTIVE SIGNATURE FORMATIC	N Final rep
FOR ACOUSTIC UNDERSEA SURVEILLANCE SYST	EMS 2
7. AUTHOR(s)	17) FY 1976-FY
7. AUTHOR(#)	O. Golden and Charles
William P. Morrogh	
PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TA
Naval Research Laboratory	
Washington, D. C. 20375	NRL Problem S01-79
1. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE
NAVELEX (Code 320) Washington, D. C. 20360	October 1977
wasinigton, D. C. 20360	300 Jan 796.
4. MONITORING AGENCY NAME & ADDRESS(If different from Controllin	Office) 15. SECURITY CLASS
	CONFIDENTIAL
	15a. DECLASSIFICATION/DOWNGRADIN
Distribution limited to U.S. Government Agencies only;	test and evaluation; October, 1977.
Distribution limited to U.S. Government Agencies only; Other requests for this document must be referred to th Laboratory, Washington, D. C. 20375.	test and evaluation; October, 1977. e Commanding Officer, Naval Research
Distribution limited to U.S. Government Agencies only; Other requests for this document must be referred to th Laboratory, Washington, D. C. 20375. 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if d	test and evaluation; October, 1977. e Commanding Officer, Naval Research
Distribution limited to U.S. Government Agencies only; Other requests for this document must be referred to th Laboratory, Washington, D. C. 20375. 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 d 18. SUPPLEMENTARY NOTES 9. KEY WORDS (Continue on reverse side 11 necessary and identity by blo Acoustic signature formation	test and evaluation; October, 1977. e Commanding Officer, Naval Research (Iterant from Report)
Distribution limited to U.S. Government Agencies only; Other requests for this document must be referred to th Laboratory, Washington, D. C. 20375. 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 d 18. SUPPLEMENTARY NOTES	test and evaluation; October, 1977. e Commanding Officer, Naval Research (Iterant from Report)
Other requests for this document must be referred to th Laboratory, Washington, D. C. 20375. 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 d. Supplementary notes. 18. Supplementary notes. 19. Key words (Continue on reverse side if necessary and identify by blo Acoustic signature formation.	test and evaluation; October, 1977. c Commanding Officer, Naval Research (Iterent from Report)

DD 1 FORM 1473 EDITION OF 1 NOV 68 IS OBSOLETE

CONFIDENTIAL

251950

CONFIDENTIAL	OOM INFILLIATE
SECURITY CLASSIFICATION OF THIS PAGE (When Date Enter	
1	
_	
1	

CONFIDENTIAL

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

UNCLASSIFIED

Table of Contents

Abstract		ħ	•	.1
Background		•	•	.1
Introduction		•	•	. 2
System Overview		•	•	.4
Signature Formation Logic			•	.6
References	• •	•	•	. 2
Display System and Interactive Dev				
Dienley System Salaction				R

ACCESSION TO	es Caction []
MLIZ	Section
DDC ;	
RNANNCUNCLE,	-1
JUSTIFICATION	
100	
BY	SAUGE AND THE COURS
I DESTRIBUTION !	VALLABILITY CODES
Dist. AVAIL	and or SPECIAL
USI	
	1
	1
	1 .
1 • 1	

UNCLASSIFIED

Acknowledgements

The author wishes to acknowledge the substantial contributions made by Messrs W. R. Johnson and H. B. Shelley of the Acoustics Division at Naval Research Laboratory, and particularly by Mr. J. R. Bouffler, Admiralty Research Laboratory, Teddington, England, a British exchange scientist working at NRL during part of this development.

OPERATOR-INTERACTIVE SIGNATURE FORMATION FOR ACOUSTIC UNDERSEA SURVEILLANCE SYSTEMS [Unclassified Title]

(C) ABSTRACT

This report describes an exploratory development for systematic organization of acoustic signals detected by multi-beam Undersea Surveillance Systems into the acoustic signature of ships.y The function described is a subset of an NRL concept for an integrated, multi-platform, undersea surveillance system known as ASP - the Advanced Surveillance Processor. The concept is termed operatorinteractive signature formation", and combines the observational power of a human operator with the storage and computational power of the computer. The interaction consists of a human operator proposing candidate harmonic series by indicating one or more harmonics of that series by means of a cursor or hand-held pointer on an acoustic display on the face of a cathode ray tube. (Signal detection and parameter estimation are accomplished by existing algorithms prior to display.) Subjective interpretations by the operator are not permitted. Ambiguities in the signature formation process are resolved by execution of appropriate signal processing algorithms. Organization of the detected signals is a four-stage $> b_{correct}$ with cprocess beginning with identification of mon-ship interfering signals, proceeding through harmonic set formation to combination of harmonic sets into signatures, and finally to highly automated steady state maintenance. The project is currently at the point where signature formation logic has been developed to the third level of complexity, approximately 70 application programs have been identified and initially specified, and display programming for a particular (dark-trace, storage) display has been completed.

(C) BACKGROUND

This development emerged from a FY'75 study of technology gaps in the area of line relate and clue extraction for the 1980's Undersea Surveillance System, and was sponsored by the Naval Electronic Systems Command (Code 320). The results of the study indicated that major deficiencies exist in our knowledge of target acoustic characteristics, in the methods and procedures used in organizing and interpreting detected signals, in the applicability of various exploratory developments in signal processing, and in the type and quantity of display systems required for effective ocean surveillance. The conclusion of the study, the details of

Note: Manuscript submitted September 27, 1977.

which are contained in reference (1), was that the principal obstacle in the path of automating undersea surveillance was the problem of organizing the detected signals into meaningful groupings prior to classification. A three phase development was planned. Phase 1, Concept Definition and Logic Development, is documented by this report. Phase 2, implementation, involves assembling the required hardware/software and coding the application programs. Phase 3, Testing and Evaluation, involves exercising the system with non-inbred acoustic data.

(C) INTRODUCTION

- (C) A study of the state-of-the-art of acoustic signature formation in multi-beam undersea surveillance systems, conducted in FY'75, revealed several serious technology gaps. 1
 - 1. As a practical matter, it is seldom, if ever, possible to distinguish, on the basis of acoustics alone, between "threat" and "threat like" detections in general surveillance.
 - 2. Although ambiguities in the signature formation process were known to occur frequently, the acoustic information necessary to resolve these ambiguities was not known.
 - 3. The sequence of procedures in signature formation, even for manual systems, was incomplete and inadequate.
 - 4. Existing man-display interfaces were inadequate and resulted in incomplete and erroneous data being extracted from the display.
 - 5. Measures of operator performance and decision criteria were largely undefined. Critical decisions were frequently made on the basis of operator "experience" or "intuition".
 - (C) The study considered in detail the four generic approaches to signature formation, namely: manual, totally automatic, threat filtering, and operator-

machine in combination. The manual, totally automatic, and threat filtering approaches were rejected for the following reasons:

- Manual the complexity of the problem is such that the human's solution is necessarily incomplete.

 Critical decisions are made on the basis of subjective or intuitive judgments.
- Totally Automatic This approach has consistently resulted in generation of fictitious signatures from fragments of real signatures, and in dismissal of real signatures through false association with other signatures.
- Threat Filtering This approach is not a signature formation technique but merely a discrete frequency detection technique. It was considered as an alternative to the other approaches. In practice, threat filtering results in high false alarm and false dismissal rates, since the acoustic characteristics stated for the threat are not unique to that class, and measures of dispersion are not known.

A more complete discussion of these techniques and their performance is given in reference (2).

- (C) If undersea surveillance systems are to perform in the general surveillance mode, it is necessary to reduce the false threat declaration rate drastically, while retaining a false dismissal rate near zero. The study concluded this could be done if the problem is addressed systematically and objectively.
- (C) The approach selected as having the best chance of success was a man-machine combination known as "Operator-Interactive Sector Scan". In this approach, the observational and pattern recognition powers of the human operator are utilized early in the signature formation process, not, as in past efforts, where his role was to correct the many errors made by the computer. The man suggests a candidate solution by interaction with the displayed acoustic spectrum. The computer verifies and expands the solution where appropriate, rejects it as incorrect, or in the case of ambiguity, executes the pertinent ambiguity-resolving signal processing algorithm. Subjective interpretations by the man, such as source evaluations, are not permitted.

Ambiguities, unresolvable by algorithm, are displayed for human interpretation only when the interaction required of the operator can be predefined.

- (C) The signature formation process (Fig. 1) proceeds through four stages. First, non-ship "clutter" station artifacts, projectors, "commas", etc., are identified. Next, candidate independent harmonic series on a particular beam are indicated by the operator. The algorithm makes the required calculations and verifies and expands the solution. The third stage attempts to associate independent harmonic sets to form ships' signatures. Finally, when "steady-state" is reached, the solution is maintained with a high degree of automation, operator interaction being required only when a significant change occurs which presents an ambiguity unresolvable by the steady state algorithm.
- (C) The "Sector Scan" above refers to the concept for implementation wherein each operator at an upgraded SOSUS NAVFAC monitors a particular azimuthal sector. Since most beams at most NAVFACS seldom, if ever, hold contact on a genuine threat target, expanded spatial searchlighting is a legitimate technique which permits the number of displays necessary to be monitored simultaneously to be minimized. (Ref. 3).

(C) System Overview

- (U) The equipment configuration for the experiment shown in Fig. 2 represents a mix of individual elements adequate for the experiment, but chosen mainly because of no-cost availability or minimum cost to acquire. Particularly in the display area, a refresh CRT with track ball controlled cursors would have been preferrable to the DICOMED-SAC (dark trace storage CRI and sonic pen) arrangement. A detailed discussion of DICOMED programming is given in Appendix A. A discussion of an optimum display is given in Appendix B.
- (U) Top level signature formation logic is given in Fig. 3. The following illustrates the procedures used.
- (C) The operator is required to monitor continually the SOSUS baseband (10-150 hz) in his assigned sector. For purposes of the experiment, the sector is defined as seven, fixed, contiguous beams. The real-world test data consists of seven magnetic tape recorded channels of 4 to 6 hours duration spectrum analyzed data at baseband (0.1 hz), vernier (.03 hz), and supervernier

- (.010 hz) resolutions with accompanying parameter estimation.
- (C) The sequence begins with a forty minute duration broadband display (150 hz) of the left-most beam, i.e., channel 1 of the magnetic tape recording. The operator attempts to recognize rather well known non-ship interference in one or more of three general classes - station equipment artifacts, man-made ocean noise, or sea noise. The suspected presence of any of these is indicated by pointing to one or more components with the interactive device, in this case a sonic-pen. A non-ship clutter recognition algorithm, if it confirms the operator's judgment, seeks to identify the interfering signals on the other seven beams as well. (Non-ship clutter is frequently visible on many beams simultaneously). A feature of this stage is that the operator, disagreeing with the algorithm can call for higher resolution displays, and as a result, present additional information to the algorithm. He cannot, however, override the algorithm's classification and force a classification of "clutter". If the algorithm does not call a signal "clutter", it is carried as a ship's signature. The concept here is that this type of interference is so well defined that algorithm performance is expected to be at least as good as the best human. Since it is possible that more than one type of clutter exists on this beam, the operator remains in stage one until he indicates interactively he is ready to proceed to beam two and ultimately, to stage two. All signals identified as non-ship clutter are tagged in the parameter estimation tables for each resolution.
- Stage two, harmonic set formation, is the most difficult to accomplish. The operator selects the most visually striking signature on the display, usually one rich in harmonics and signal-to-noise ratio. He indicates interactively some number of harmonics of the series. For multiple line signatures, this means a minimum of two adjacent harmonics. The algorithm calculates a trial fundamental, finds other harmonics of the set in the parameter estimation tables, and determines, on the basis of harmonics present and strength of harmonics, if this or another beam is the main lobe detection. The results are presented to the operator for verification. He is permitted to disagree on the basis of an observation of inconsistency in the solution. For example, a minor dynamic, not resolved by the parameter estimation algorithm, may be clearly visible in some, but not other, candidate harmonics. If the operator concurs, the parameter estimation table is tagged appropriately. Next, a threat potential algorithm is executed. This is merely a conservative "clearly non-threat" vs "possible threat"

distinguishing algorithm. An attempt is made to localize "Possible threats" by both data processing (maneuvering board solutions) and signal processing, principally inter-array correlation, while "clearly non-threat" are data-processed only from then on. (Note that in this experiment, since the acoustic data base is analyzed data, any large signal processing required is done remotely, at contractor's facilities or the ARC, and not necessarily in real-time.)

- (C) The operator then proceeds to the next most visually striking signature and repeats the sequence exactly until every discrete frequency in the parameter estimation table for this beam has been accounted for as either a main-lobe or side-lobe detection. The control algorithm will not permit him to advance to the next beam until he has accounted for every discrete frequency in the beam being analyzed. He continues from left to right until all discrete frequencies on the seven beams for the forty minute period are associated with one or another harmonic series.
- (C) In the third stage, he attempts to group individual harmonic sets into ships' signatures. Often this will be done on the basis of observations of similarity of estimated position, direction of movement, or rough bearing rate of change. This kind of information is displayed to the operator for interpretation and trial solution.
- (C) Upon completion of the third stage, all signals present have, theoretically, been associated correctly with individual ships detected. A steady state algorithm monitors the static solution for changes, particularly changes which affect the credibility of the current solution. Changes are reported to the operator for confirmation or appropriate action.
- (C) Having reached steady state, the operator returns to channel 1 to begin the sequence anew with display of the next time increment. However, his interaction is expected to be minimal since he is required to interact only to the extent that signals detected are not accounted for by the steady state algorithm.

(C) Signature Formation Logic

The paragraph numbers referenced below correspond to the entries in the third level functional logic diagrams, Figs. 4 through 7.

The same of the sa

Non-Ship Clutter (NSC) Removal (Fig. 4)

- 1.0 (C) The operator displays the broadband (10-150 Hz) lofargram on the first beam. At this point he is attempting to recognize interfering signals not generated by ships. The system design philosophy is that these kinds of interfering signals, station artifacts, man-made ocean noise and sea noise are visually recognizable to an operator, usually without even the necessity of making a frequency measurement.
- 1.1 (C) Since many of these kinds of interfering signals appear simultaneously on many or even all beams of an array, the operator reinforces his classification by displaying all seven beams simultaneously on the face of the CRT. The display consists of 5 minute segments of each of the seven beams in beam number order from top to bottom of the screen. Start time for each segment is the time indicated interactively by the operator.
- 2.0 (C) Since it may be desirable to display examples of a particular type of non-ship clutter to allow the operator to make a direct visual comparison between the present interfering signature and a library of similar interfering signals, a photographic information retrieval system was incorporated as an option. In this system, the algorithm not only identifies the type of non-ship clutter, but also displays the address or storage location of examples of that type. The actual display was intended as an "offline" function. Examples to be displayed were controlled by the operator who decides whether or not to display a particular image. The implementation contemplated was a photographic information retrieval system, perhaps one using microfiche image storage. It is essentially a memory jogger which prompts the operator to the most likely source of non-ship clutter.
- 3.0 (C) The operator indicates on the face of the broadband CRT display, enough components of the candidate NSC so that the algorithm can identify any others and confirm as nonship clutter. It was anticipated that some non-ship clutter, particularly sea-noise, would require special interactive techniques, for example, multiple indications in the time domain in the case of the sea-noise phenomenon known as "commas", to establish the periodicity of these signals for consideration by the algorithm.

- (C) The form of the interaction is that the operator "points" at the signal or signals on the face of the CRT by touching them with a "sonic pen", a device resembling a ball-point pen which contains a spark gap in the tip across which a hypersonic signal with an expremely short rise time jumps when the tip is depressed on a surface. Two orthogonally mounted pairs of linear microphones, each 14 inches in length, receive the resultant spark. Internal circuitry converts arrival time into X and Y coordinates in the 14" X 14" area to a resolution of as much as 4000 X 4000 points. Sonic pen interaction, thought of as simply an extension of a man's pointing finger is expected to be a natural and convenient method. Parallax problems resulting from curved tube faces, or simply operator inaccuracy were to be handled by the interactive control algorithm. Technical details of the sonic pen are discussed in Appendix A.
- 3.1/3.2/3.3/3.4(C)System design anticipates that the operator, recognizing non-ship clutter is able to go one step farther to the point that he is able to categorize it tentatively as one of the three generic classes of non-ship clutter. At this point, the operator is heavily interactive with the system. He makes the selection of most likely type of non-ship clutter, and on completion of the algorithm's evaluation, gets the opportunity to concur or not concur. Note that the operator's options at this point are:
 - to accept the algorithm's judgment that the signal is non-ship clutter and continue to the next nonship clutter signature, (which may be on another beam), or, if there are no others, continue on to harmonic set formation, or,
 - 2. disagreeing with, or being unconvinced by, the algorithm's decision that the signal is not a recognized type of non-ship clutter, he can provide additional signature clues, perhaps from higher resolution displays, or, he can select a search through one or both of the other generic non-ship clutter paths.

The one thing he cannot do, however, is override the algorithm and declare a signal to be non-ship clutter if

the algorithm decides otherwise. Such signals are carried as if they are ship detections. The reasoning that went into this design feature is that it is more desirable to suffer a temporary (until the algorithm can be updated) increase in false target loading than to permit subjective interpretations (i.e., classifications) at this point to cause false dismissal of a real target signature.

The principal types of non-ship clutter considered in the initial design were those given in Chapter 3 of reference 4.

- 4.0 (C) All identified non-ship clutter is tagged as accounted for in the parameter estimation table for each resolution, and displayed multi-beam in the format of Section 1.1, above, with the exception that non-ship clutter signals are labeled with a cross stroke on the display. This sequence continues if the operator wishes to test for the presence of other non-ship clutter.
- 5.0 (C) A high-risk effort designed to eliminate identified nonship clutter from the display was to be undertaken on a
 not-to-interfere basis. The intent was to change all
 intensity words in the time-frequency rectangle enclosing
 the non-ship clutter to zero intensity, and then substitute
 pseudo-random noise in that interval. Some of our prior
 experience in this area indicates that this technique
 sometimes leads to a more confusing display.
- (C) Harmonic Set Formation (Fig. 5)
- 1.0 (C) Having identified all known non-ship clutter on all beams, the operator next tries to form independent harmonic sets from the remaining discrete frequencies. The approach is to use the pattern recognition powers of the human to reduce the complexity of the organizational problem by attempting to organize the most visually evident harmonic set first, then continue to the next most visually evident, and so forth, until all discrete frequencies are accounted for.
 - (C) The technique employed is to have the operator point at the minimum number of components necessary to determine the fundamental, normally two adjacent harmonics, although he can indicate more, or less, in the case of a single-line signature. The algorithm makes a frequency determination

for each operator indication.

- 2.0 (C) The frequency obtained is the value in the parameter estimation table, not the exact value that would be calculated from the position of the interactive device. In cases where the operator indication is not on a displayed frequency, whether through parallax or hasty or inattentive action, the algorithm selects the nearest frequency in the table. In this case, as in the case of an indication which might refer equally well to two frequencies, e.g., one equidistant between two signals, the algorithm's results are displayed to the operator for concurrence. Whenever an uncertainty arises at this stage, the operator can cause displays at vernier and super-vernier resolution to permit observation of minor dynamics or closely spaced signals. A multiple band display permits side by side (timesynchronized) high resolution display of several narrow bands simultaneously. Since the accuracy of the frequency indication is that of the front end signal processor the mean square error characteristic of that particular system will be used initially in testing validity of harmonic set formation.
- 2.1/2.2(*) Calculation of the fundamental frequency is accomplished by subtracting the lower of two frequency entries from the higher, or, if more than two are entered, the minimum difference is calculated. We had given some thought to a procedural requirement that the first two interactive entries must represent the harmonic spacing, but concluded that this was both undesirable and unnecessary. The fewer constraints on ther operator's actions, the better.
- 2.2 (C) The algorithm tests that all signals indicated are integral harmonics of the fundamental frequency. If any are not, this information is displayed to the operator, and he is permitted to delete those in error for this particular harmonic set, or return to step 1.0 if the solution is grossly in error. The algorithm attempts to expand the solution by accessing the parameter estimation table for that beam and time interval in search of discrete frequencies which, arithmetically at least, are part of the indicated harmonic series. Candidate harmonics are indicated on the acoustic display by means of a slash (). Acceptance by the operator results in tagging in the parameter estimation table and completion of the indiation on the acoustic display by a superimposed reverse slash (/) i.e., combination

- / + \ = X. The operator is permitted to reject candidate harmonics, in which event the parameter estimation table entry is available for consideration as part of another harmonic set.
- 2.3 (C) Candidate harmonic sets detected on one beam will frequently be detected on other beams as well. The algorithm, making use of the harmonics identified thus far, attempts to find other beams with more harmonics or the same harmonics with greater relative signal-to-noise values. Algorithm identification of a different beam as best beam satisfies the requirement for accounting for each discrete frequency on one beam before moving on to the next beam. An algorithm decision that this harmonic set is actually on another beam results in a multi-beam lofar display permitting the operator to concur or not concur and to accomodate situations where the pattern recognition capability of the operator can be employed to resolve ambiguities not clearly resolved by the algorithm - e.g., the case where interfering signals temporarily mask the signature on the beam being examined.
- 3.0 (C) When it has been determined that this is the best beam for this harmonic set, the baseband lofargram is displayed with all harmonics identified by the man-machine combination labeled.
- 3.1 (U) The operator has the opportunity to correct or expand the solution, i.e., on the basis of observation of the display either to delete additional harmonics supplied by the algorithm or to add additional harmonics not supplied by the algorithm. (An example of the latter might be discontinuous signals.)
- 3.2 (U) The operator is required to concur in the solution at this point. If he made a correction or expansion, the change must be verified correct by the algorithm.
- 3.3 (C) The pivotal decision point in the signature formation process is the point at which the operator decides that he is, or is not, satisfied with the solution thus far a solution based largely on measured frequency, observed dynamics, and rough bearing compatibility. In the event an ambiguity or uncertainty arises, he goes to that part of the harmonic series formation sequence that involves the greatest amount of operator interaction and the execution

- of special purpose signal processing algorithms. The percentage of time that the use of signal processing algorithms for ambiguity resolution will be required is not known. However, it seems likely that most harmonic set formation can be done by frequency-based operator interactive techniques alone, particularly in the case of harmonic-rich signatures which comprise the largest part of the interfering clutter.
- 3.3.1 (C) (Figure 5B) The operator selects that ambiguity resolution path which addresses the specific uncertainty encountered. We anticipate that the most important of these will be in the areas of bearing and minor dynamics, although five other characteristics (amplitude, phase, harmonic emphasis, bandwidth, and stability consistency) will be considered. No signal processing development is being done as part of this experiment. The signal processing algorithms shown in Fig. 5C have been developed by Navy Laboratories or contractors, and are to be available for execution either at the ARPA Research Center or other remote facilities. It is not necessary that they be executed on demand by computer to computer link. Ambiguity resolution by signal processing involves a two-step decision process. The operator first selects one of seven characteristics he wishes to consider. Next, he chooses, consecutively, those signal processing algorithms capable of resolving that particular ambiguity. (In this experimental approach, the intent is to exercise all available algorithms capable of resolving each ambiguity and so evaluate the potential of each.) The objective is to identify the minimum signal processing package required to provide an acceptable confidence level for association of detected signals. In the current experiment, since the signal processing algorithms are, in fact, exploratory developments, whose operational deployment potential is unknown, operator concurrence with the result of a particular algorithm is required.
- 3.3.1.1 (Chearing sorting is highly significant in harmonic set formation if the candidate components have different bearings they are clearly not from the same noise source. The results of execution of the bearing determination algorithms are displayed for operator concurrence. The exact value of the confidence factor assigned is determined by the design of the particular algorithm, within its range of effective operation, until and unless empirical evidence indicates otherwise. In the case where bearings are clearly not compatible, those components cannot be formed into either the same harmonic set or the same ship's signature.

- 3.3.1.2() Resolution of time-dynamic ambiguity is the next most important consideration. A clear mismatch on dynamics prevents inclusion of the candidate components in the same harmonic set, but does not necessarily preclude their being linked in the same ship's signature.
- 3.3.1.3C) Although the characteristics tested (amplitude, phase,
- 3.3.1.4 harmonic emphasis, stability and bandwidth) are thought
- 3.3.1.5 to have less relative significance than the bearing and
- 3.3.1.6 dynamics tests, each will be tested to try to establish
- 3.3.1.7 a maximum confidence score. The technique is, in general, the same as in 3.3.1.1 and 3.3.1.2 except that, since the significance of these measurements is frequently uncertain, a candidate component will not be rejected for either harmonic set or ship signature compatibility on the basis of a "no consistency" result. That is, the significance, if any, will be determined experimentally.

Summarizing the effect of the seven tests:

- a. bearing inconsistency prohibits both harmonic set and signature formation,
- b. dynamic inconsistency prohibits harmonic set but not signature formation, and
- c. all other inconsistencies merely lower confidence in harmonic set or signature formation but prohibit neither.

When the operator has completed a test of all ambiguities, or if no useful purpose would be served by addressing the remaining characteristics, he gets a display with a statement of the degree of confidence with which the candidates have been associated.

- 3.5 (C) Bandwidth, stability, and harmonic emphasis are determined by accessing the parameter estimation table of the front-end signal processor (spectrum analyzer) utilized. The precise analysis system used is of no particular consequence several are suitable provided only that analysis bandwidths approximating SOSUS broadband, vernier, and super vernier are available, and that signal characteristics are estimated and available in tabular format.
- 3.6 (C) This section represents the simplest kind of classification

algorithm - i.e., "twenty-questions" or serial logic. In fact it serves, not as a classification algorithm, but as a "negative classifier", or filter for non-interest signatures. Each decision diamond in the diagram represents a comparison of the harmonic set present to known limits in the operating characteristics of targets of interest. The comparisons are objective, based only on the frequency and harmonic emphasis characteristics of the particular harmonic set. Subjective interpretations, for example, estimates of the source, i.e., the rotating machinery producing the signal, are not permitted.

- (C) The significance of this test for threat potential is that signals having any threat potential whatsoever are localized, if possible, using both data and signal processing algorithms, while those having no threat potential are not localized, but merely have their best beam identified.
- 3.7 (C) Harmonic sets meeting the minimum threat potential requirements are to be localized. As a practical matter, the initial localization effort with no bearing history available, and simultaneous multi-station contact unlikely, will almost always result in storing the best beam or bearing only. If there is a bearing history, algorithms utilizing bearings, times, and estimated speeds of advance will be executed. If there is multi-station contact, coherent signal processing algorithms will be executed for simultaneous detections meeting the signal input requirements for these algorithms. In all other cases, multi-station localization data processing techniques will be used. Depending on the success of the localization algorithms, the formed sets have either an estimated position or best beam/bearing stored in the threat accounting table.
- 3.8 (C) Upon completion of the localization attempts, the system requires that all discrete frequencies in the parameter estimation table of the beam being processed be accounted for either on that beam or as side lobe detections from another beam. Advancing to the next beam while one or more frequencies are unaccounted for is not permitted. When all frequencies on that beam are accounted for, the operator advances to the next beam and continues to form harmonic sets, unless he has processed the final beam in which event, he goes to the next major phase combining independent harmonic sets into the signatures of individual ships. Note that the organizational concept employed is that all harmonic

sets are formed before the first ship's signature is formed.

- (C) Ship Signature Formation (Fig. 6)
- 4.0 (C) The objective of this function is to combine separate harmonic series into the signature of a ship, wher' those series may be dependent, i.e., related by some fixed ratio, or independent. In most cases, we anticipate that combination will be done on the basis of similarity of position or tracking characteristics. In some number of cases, it may be possible to combine harmonic sets on the basis of measurable or observable acoustic similarities.
- 4.1 Three displays are used by the operator in varying combina-4.2 tions and sequences to discover characteristics common to
- 4.3 two or more harmonic series. These displays are:
- 4.4
- a. Geographic A plot of bearing vs range for harmonic series successfully or tentatively localized. This display also plots harmonic set number vs range.
- b. Azimuth a plot of bearings vs series held on that bearing. A more detailed alpha-numeric display accompanies this plot.
- c. In/Out a plot of detection intervals for the strongest component for each series on a particular beam or bearing.

An example serves to illustrate a likely sequence. (Fig. 6B)

The operator calls for the azimuth display and notes that harmonic series labeled A, D, and F are on the same bearing. A and D, clearly non-threat signatures, have not been localized, but F, with some threat potential, has been localized for 5, 10, and 15 knot speed estimates. A display of detection intervals for A, D, and F reveals that A and F have simila time histories. The operator attempts to localize the non-threats A and D, using the previously assumed speeds, - vs other appropriate speeds if the situation warrants. A is determined to have a position and general direction of movement similar to F, while D has little track correlation. The logical inference is that A and F combined are candidates for the ship's signature. The more consistencies, of course, the

greater the probability that the inference is the correct one.

- 4.5 (C) An attempt is made to confirm relationships suggested
 4.6 by tracking and localization similarities uncovered in 4.1
 through 4.4 through the use of signal processing resources.
 Specifically, frequency trackers are assigned to the
 strongest harmonic in each of the two series to try to
 establish frequency excursion consistency, in terms of
 direction of excursion, or, better, the existence of a
 fixed frequency ratio between series. A second signal
 processing approach seeks to establish constant phase
 relationships between the two series.
- 4.7 (C) Since the reliability of conclusions based on minor dynamics and phase signal processing is questionable, the operator is given a multi-beam display of the candidate solution and is required to concur or not concur. Until such time as the reliability of these signal processing algorithms is certified, the operator's concurrence is required before candidates for combination are accepted by the system as harmonic series from the same ship.
- 4.8 (C) When two or more harmonic series are combined in a ship's signature, the position assigned to that signature is that which corresponds to the highest confidence localization of any of the series.
- 4.9 (C) The negative classification algorithm applied in the harmonic set formation phase is reapplied. Series which alone have threat potential, when associated with one or more clearly non-threat series, become clearly non-threat ship signatures. Depending on the threat potential of the newly combined series, the signature is stored in either the threat or non-threat file. The significance of this is that when contact is lost on signature components in the non-threat file, no signal processing action is taken, while the same condition (i.e., lost contact, not just loss of a component) in the threat file results in automatic high resolution signal processing in an attempt to regain contact.
- 5.0 (C) An alpha-numeric display of all current potential threats is presented to the operator. Before entering

the Steady State phase, frequency and geographic trackers, as available, are assigned by the operator to retain contact and refine position and track estimates.

5.0 (C) The Steady State Solution

- (U) This phase is characterized by a high degree of automation whose purpose is to maintain and refine the solution developed during the operator-interactive phase with a minimum amount of recourse to the operator interactive mode.
- 5.1 (C) The Steady State algorithm continually monitors for changes in the Steady State Solution by comparing the most recent formed signatures in the threat and non-threat descriptor tables to the latest output of the front end signal processor in the parameter estimation table. The changes fall into one of four general categories:
 - a. loss in harmonic set member(s)
 - b. gain in harmonic set member(s)
 - c. change in signature characteristics
 - d. change in target position, tracking, or maneuvers

5.1.1 Loss in Harmonic Set Member(s)

(C) Loss of one or more components of a non-threat signature is a desirable event in that it reduces non-threat interference. Loss of such components causes the non-threat descriptor table to be updated. Where the loss reflects target movement, i.e., components lost on one beam are now detected on another, a new "best-beam" determination is made and the table so modified. Since the ratio of well-defined, harmonic-rich "clearly non-threat" signatures to "potential threats" is, conservatively about 10 to 1 in the SOSUS and the ratio to actual or "probable" threats is much higher still, it should be possible to account for losses in harmonic sets almost totally automatically without recourse to operator interaction except in rare cases.

Potential threat signatures are handled differently. A loss of one or more harmonics of a potential threat causes an immediate alpha-numeric display advisory to the operator, stating not only the specifics of the loss, but also the processing resources available to

attempt regaining contact. The operator's action is not determined by algorithm. Loss of a single component may have no special significance except in the unusual case where that component is the only one held simultaneously by another array. An acoustic display allows the operator to note visually the difference in signature appearance before and after the component loss.

- (C) Where it is desirable to apply signal processing resources for reacquisition, the operator specifies the type and number of channels to be used and the reacquisition search plan.
- (C) A successful reacquisition, e.g., by a frequency tracker or high resolution analyzer, requires operator concurrence and results in either an update of the threat descriptor file for concurrence or return to harmonic set formation for non-concurrence.
- (C) The operator, as a result of an unsuccessful reacquisition attempt, can direct the application of other signal processing resources, or the continued application of the previous ones for a fixed period of time.
- (C) Loss of components in a high potential signature causes the operator to return to harmonic set formation to maximize the probability of reacquisition. It is likely, however, that in the case where the loss of one or more components still leaves a well-defined signature, the operator will opt to return to steady state as in the case of a low threat potential signature.

5.1.2 Gain in Harmonic Set Member(s)

(C) New detections are compared to existing signatures primarily on the basis of frequency and bearing information. Successful matches result in both an alpha-numeric advisory message, and an acoustic display indicating the harmonic(s) gained and the candidate solution, which requires operator concurrence. Detection of new, unrelated components results in immediate exit from steady state to harmonic set formation. Past experience indicates that most new detections are associated with existing signatures.

5.1.3(C) Change in Signature Characteristics

(C) A change in signature characteristics noted by comparing the values in the latest parameter estimation table to the previous entries causes execution of the negative classification algorithm. Examples of changes are:

a) a change in harmonic emphasis, b) a change in the ratio of the fundamentals of two harmonic sets. These kinds of changes have the effect of converting threats to non-threats and vice versa, or of increasing or decreasing the threat potential, of a possible threat. The operator's concurrence is required to update the target status tables, both threat and non-threat. In the case where the operator disagrees with a non-threat to threat conversion, he is required to examine an acoustic display, and is permitted to call for execution of ambiguity-resolving signal processing resources.

5.1.4(C) Changes in Target Localization, Tracking, Maneuvers

- (C) Both threat and non-threat signatures are checked for correctness of the original solution on a continuing basis. Where the signature consists of more than one harmonic series, both are checked for bearing consistency. For threat signatures, changes in the predicted track solution represent a change in the steady state. Abrupt loss of one or more series or frequency shifts indicating maneuvers, are recognized as significant changes. All result in a display to the operator and a requirement for an operator-interactive task i.e., a decision as to the effect of the change on the particular signature's threat potential and a modification, if appropriate, of the threat or non-threat file.
- (C) At the point where Steady State has been reached, since change takes place slowly in fixed surveillance systems, and most changes reflect detections or losses of components of signatures currently hold, it should be possible to maintain the Steady State Solution with a low operator task rate, where the tasks, options, and action required are objectively defined. A major purpose of this experimental development is to determine empirically, using real-world data, the operator task rate.

References

- 1. Operator/Machine Interactions for Sector Scan in Acoustic Undersea Surveillance NRL Program Plan of 6 June 1975 (S).
- 2. Automatic Signature Formation and Classification NRL ltr ser C49 dtd 10 Feb 1977 (C).
- 3. COMOCEANSYSLANT LIMA Events 1972 and 1973. (George V. Olds, NRL) Presentation to Automatic Detection/Automatic Classification Committee at NUSC, NLON June 1974.
- 4. Principles of Lofargram Analysis, NAVSHIPS 0967-340-4010 (S).

(C) Fig. 1 - Signature formation sequence

(U) Fig. 2 - Experimental configuration

St. commission of the company of the commission

(C) Fig. 3 - Operator interactive signature formation overall logic

(U) Fig. 4 - Non ship clutter removal 2nd level diagram

25 (Page 26 Blank)

(U) Fig. 5 - Harmonic set formation 2nd level diagram

27 (Page 28 Blank)

(U) Fig. 5 - Harmonic set formation 2nd level diagram

27 (Page 28 Blank)

CONFIDENTIAL

2

29 (Page 30

CONFIDENTIAL

29 (Page 30 Blank)

CONFIDENTIAL

(U) Fig. 5B - Harmonic set for

(Page

2

and the second second and the control of the contro

CUT

- Harmonic set formation 3rd level diagram (page 2)

31 (Page 32 Blank)

3

CO

The second secon

CONFIDENTIAL

CONFIDENTIAL

33 (Page 34 Blank) CONFIDE

33 (Page 34 Blank) CONFIDENTIAL

CONFIDENTIAL STORE IN KON THREAT FILE ASSIGN ACOUSTIC & GEOGRAPHIC TRACKING PROCESSORS APPLY, NEG CLASS ALGO ALL TGTS STORE IN THREAT FILE

35 (Page 36 Blank) CO

35 (Page 36 Blank)

CONFIDENTIAL

2

A commence of the second second second

(U) Fig. 7 - Steady state solution 2nd level diagram

CONFIDENTIAL

and the state of t

RE

The same and the same and the same and

LOSS IN HARMONIC SET MEMBER(S)

(U) Fig. 7A - Steady state solution 3rd

39 (Page 40 Blank)

7

GAIN IN HARM. SET MEMBER(S)

CHANGE IN EXISTING SIGNATURE C

1975年後の1985年の1985年後の1985年後の1985年の1

NGE IN EXISTING SIGNATURE CHARACTERISTICS

The second secon

CHANGES IN TARGET LOCALIZATION, TRACKING, MANEUVERS

CONFIDENTIAL

Appendix A

Display System and Interactive Device

Funding constraints made it necessary to plan to conduct the experiment using an on-board display and interactive device.

The display is a DICOMED Corporation Model 36 storage display. The general characteristics are as follows:

- a. dark-trace storage type with 10" usable diameter,
- b. up to 1600 resolvable points per horizontal trace.
- c. 16 displayable intensity levels,
- d. full screen image generation in a minimum of 43 seconds, and
- e. full screen erase time of 10 seconds.

The interactive device is a Science Accessories Corporation Graf Pen Model GP-2 sonic digitizer. The GP-2 measures the time required for a sound wave to reach each of two orthogonally-mounted linear microphones located on two sides of the DICOMED. The sound source is a spark, generated by closing the gap in the tip of a device resembling a ball point pen by depressing the tip on the face of the screen. Each time the spark jumps the gap, a hypersonic sound wave with a short rise time is generated. The elapsed time between spark generation and reception at each of the two microphones is a unique measure of the position of the pen relative to some fixed reference, for example form on a lofargram, that is, a highly resolved frequency and time coordinate.

The sensor length of the GP-2 is 14 inches, exceeding the usable portion of the DICOMED screen. The resolution over this length is either 2000 or 4000 resolutions depending on whether 11 or 12 bit data words are used, permitting resolution of a displayed lofargram to at least 0.1 hz.

Although the DICOMED-GRAF Pen combination was adequate to permit the experiment to be pursued, there were several shortcomings, principally in the area of support software.

For the DICOMED:

- a. No software, at any level, exists to support image generation. Each instruction and data point must be in machine language. All communications protocol between the display and the computer are the programmer's responsibility.
- b. Display graphics, including alphanumeric characters, must be written in machine language.

- c. No operator interactive hardware or software was available. Common interactive devices like cursors or light pens are not suitable for use with dark trace storage displays.
- d. It is the nature of storage displays that modifications to already displayed data are limited. Deletion of previously displayed data requires total erasure of the screen and regeneration of the modified image.

For the GRAF-Pen:

- a. A driver to permit GRAF-Pen input-output to the HP-2100A did not exist.
- b. The GRAF-Pen was not compatible with the HP-12566B standard interface. (This was resolved by designing and fabricating a second interface between the GRAF-Pen and the computer interface.)

Experimental Display Program:

In order to test the display system, a stand-alone, core resident program was developed to simulate display of real acoustic data. A self-contained subroutine generated pseudo-random background noise for display. Discrete frequency components were entered by the operator on the TTY. Data entry was limited to two multiple-harmonic series, and one unrelated single discrete frequency. Relative amplitude, bandwidth, start and stop times could be specified by the operator.

The image produced was judged of adequate quality and resolution, with the possible exception that the phosphor was of magenta hue, so that amplitude differences were represented visually by shades of purple, rather than gray to black. The problem seems to be in the novelty of the display compared to a paper writer rather than a quantitative difference in visual detection capability.

Display Program:

The following source listing (Fig. 1) permits operator generation of simulated lofar displays and the DICOMED. The program was designed by J. R. Bouffler, Admiralty Research Laboratory, a British exchange scientist working at NRL during part of this development. The display portion of the program is usable in its entirety. The acoustic data input necessarily needs to be rewritten for use with other than simulated data.

BILLJ1 T=00003 IS ON CR00002 USING 00024 BLKS R=0000

```
0001 ASMB, A.L
0002
0003
      *06JAN767UJ05
0004
0005
0006
      *DEMONSTRATION PROGRAM
0007
      *PARAMETERS ENTERED FROM TTY.
0008
     *TWO HARMONIC FAMILIES.
0009
     *ALTERNATING LINE.
0010
     *STABLE LINE>.
0011
     *EDITING.
0012 ×
0013
            ORG 2000B
0014
            UNL
0015 STRT NOP
0016
            CLA
0017
            STA GCNT
0018
            JMP PARD, I
0019
            HLT 60B
                             WAIT
0020 STA
            JSB ERA
                           GO TO ERASE SUB
0021
            JMP NEXTD.I
0022 STB
            JSB OVT
0023
            LDB GCNT
0024
            INB
0025
            STB GCNT
0026
            NOP
0027
            JMP INI
0028
      STE
            JSB OVT
0029
            CLB
0030
            LDB GCNT
            NOP
0031
            JMP INI2
0032
0033
      ราท
            JSB PNU2.I
0034
            LDA W
                             FETCH WIGL WORD
0035
            ADA HIT
0036
            STA HIM
0037
            LDA W
0038
            ADA H2T
0039
            STA H2M
0040
            LDA W
0041
            ADA H3T
0042
            STA H3M
0043
            LDA H4T
0044
            ADA W2
0045
            STA H4M
0046
            LDA W3
                           FETCH WIGL MODR.
0047
            ADA H5T
                           MOD.LINE
0048
            STA H5M
0049
            LDA W3
0050
            ADA H6T
            STA H6M
0051
0052
            LDA W3
```

Figure 1

A3

```
0053
            ADA H7T
0054
            STA H7M
0055
            LDA AMP4
0056
                           ALT. LINE ?
            SZA
0057
            JSB ALT
                             YES-GO TO SUB
0058
            LDA AMP8
                             N0-
0059
            SZA
                           SINGLE LINE ?
0060
            JSB St.
                             YES-GO TO SUB
0061
            JSB KZ
                             NO-GO TO KNEE ROUTINE
0062
            JSB FS
                           GO TO FADE IN LINE SUB
0063
     NOISE JSB PNN2, I
0064
            LDB HC
                             FETCH CELL COUNT
            CPB H1M
0065
                           IS THERE A FUNDL, LINE?
0066
            JMP *+16
0067
            CPB H2M
0068
            JMP *+16
0069
            СРВ НЗМ
0070
            JMP *+16
0071
            CPB H4M
0972
            JMP *+16
            CPB H5M
0073
0074
            JMP *+16
0075
            CPB H6M
0076
            JMP *+16
0077
            CPB H7M
9978
            JMP *+16
0079
            CPB H8T
0080
            JMP *+16
0081
            JMP THRS
0082
            ADA AMPI
                           ADD SIGNAL TO NOISE
0083
            JMP *+14
0084
            ADA AMP2
0085
            JMP *+12
0086
            ADA AMP3
0037
            JMP #+10
0088
            ADA AMP4
0089
            JMP *+8
0090
            ADA AMPSM
0091
            JMP *+6
0092
            ADA AMP6M
0093
            JMP *+4
0094
            ADA AMP7M
0095
            JMP *+2
0096
            ADA AMP8M
0097
            RRR 4
                           BRING 5TH BIT TO END FOR TEST
            SLA
0098
                           IS AMPLITUDE > MAX?
0099
            JMP *+4
0100
            RRL 4
                             NO -RETURN TO STATUS QUO
0101
            AND MAX
                           MASK
0102
            JMP THRS
0103
                           REPLACE S+N EITH MAX.
            LDA MAX
      THRS
6104
           L.DB THR
0105
            CPB D0
                           IS THRESHOLDING REQUIRED?
0106
            JMP IHT
```

Figure 1 (Continued)

11

```
0107
            JSB T
                             YES-GO TO THRESH. ROUTINE
0108
      INT
            JSB OUT
                             OZP DOT INTENSITY
0109
            ISZ HC
                             ? REACHED END OF LINE
0110
            JMP NOISE
                               NO-GO DO MORE CELLS
            LDA EOLX
0111
                               YEW-FETCH EOL CODE
0112
            JSB OUT
0113
            LDA HOØ
                             FETCH MAX CELLCOUNT
0114
            STA HC
                             RESET CELL COUNTER
0115
            ISZ VC1
                           INCR. LINE COUNTER
0116
            JMP *+2
            JMP FIND.I
0117
            ISZ VC
0118
                             ? REACHED END OF FRAME
0119
            JMP STD
0120
            LDA GCNT
0121
            SZA
0122
            JMP *+4
0123
            ADA DI
0124
            STA GCNT
0125
            JMP FIND. I
0126
            CLA
0127
            STA GCNT
0128
            JMP FIND, I
0129
            JMP FIND, I
0130
     DUT
            NOP
0131
            AND MASK
0132
            ADA REQ
0133
            01A 168.C
0134
            SFS 16B
0135
            JMP *-1
0136
            CLA
0137
            OTA 168.C
0138
            JMP OUT, I
0139
0140
            SPC 5
0141
      *DISPLAY INITIALIZATION ROUTINE
0142
0143
      ERA
            NOP
0144
            CLA
0145
            OTA 168.C
0146
            STC 168.0
0147
            LDA IN
0148
            JSB OUT
0149
            LDA ERS
                            FETCH ERASE CODE
0150
            JOB OUT
0151
            JMP ERA.I
0152
0153
      INI
            NOP
0154
            CLA
            STA CT1
0155
            STA CT2
0156
0157
            STA HIM
                           SET LINES TO ZERO
0158
            STA H2M
0159
            STA H3M
0160
            STA H4M
```

Figure 1 (Continued)

```
0161
            STA H5M
0162
            STA H6M
0163
            STA H6M
0164
            STA H7M
0165
            STA H8M
0166
            LDA ASD
0167
            STA TEMP1
9168
            LDA AK
0169
            STA TEMP
0170
            LDA DM10
0171
            STA FM
0172
            JSB PNSTD. I
            LDA VO0
0173
0174
            STA VO
0175
            JMP #+2
     INI2 NOP
0176
0177
            LDA IN
0178
            JSB OUT
                            FETCH RANDOM POSITION CODE
0179
            LDA RPV
0180
            JSB OUT
0181
            LDA VCII
0182
            JSB OUT
0183
            LDA VCI2
0184
             JSB OUT
0185
                            FETCH RANDOM POSITION CODE(HORIZ.)
            LDA RPH
0185
             JSB OUT
0187
            LDA HCII
0188
             JSB OUT
0189
            LDA HCI2
0190
             JSB OUT
0191
            LDA VO01
                           SET OVERALL COUNTER
             STA VC1
0192
0193
            LDA HOØ
0194
             STA HC
                            SET CSLL COUNT
0195
             JMP STD
0196
0197
             NOP
0198 *
0199
      ****CONSTANTS
0200 ×
             OCT 010000
0201
      IN
0202 ERS
             OCT 010200
0203 RPV
             OCT 010011
0204 RPH
             OCT 010010
0205
      EOLX
             OCT 010002
0206
      VC I 1
             OCT 000304
0207
      V012
             OCT 000002
0208
      HC I I
             OCT 000373
0209
      HC12
             OCT 000000
0210
      REQ
             OCT 000400
0211
      MASK
             OCT 070377
0212
0213
      >★KNEE START SUB-ROUTINE
0214
```

Figure 1 (Continued)

0215	KΖ	NOP	
0216		LDA	VC ·
0217 0218		ADA SSA	KST
0219		JMP	KZQ.
0220		LDA	
0221		ADA	ĒΚ
0222		SSA	
0223		PML	
0224		l DA	
0225 0226		ADA	VC
0226		SSA	KZ, I
0228			KSF
0229		ADA	
0230		SSA	
0231		JMP	
0232		JMP	KZA
0233 0234		LDH	TEMP.I H1M
0235		STA	H1M
0236			TEMP, I
0237		ADA	H2M
0238		STA	H2M H2M
0239			TEMP.I
0240		ADA	H3M
0241 0242		51H	H3M TEMP
0242		END	DM1
0244			TEMP
0245		JMP	KZ, I
0246		JMP	KZ,I KZB
0247		LDA	
0248		STA	H1M
0249 0250		LUH	H2T H2M
0251		51H	H3T
0252			нзм
0253			KZ.I
0254	KZA	CI.A	
0255			H1M
0256 0257			H2M
0257 0258		STA JMP	H3M KZ, I
0259	KZ8	LDA	
0260		ADA	
0261		STA	
0262		LDA	
0263		ADA	
0264		STA	
0265 0266		LDA ADA	
0266 0267		STA	
0268		ISZ	

Figure 1 (Continued

```
JMP *+1
0269
            JMP KZ.I
0270
0271
      ******CONSTANTS
0272
0273
0274
      TEMP
            NOP
0275
            DEF K1
      ΑK
0276
            DEC -91
      K 1
0277
      K2
            DEC -83
0278
      К3
            DEC -74
0279
      K4
            DEC -66
0280
      K5
            DEC -58
0281
      KΘ
             DEC -47
0282
      K7
             DEC -36
0283
      Κ8
             DEC -30
             DEC -24
0284
      К9
             DEC -18
0285
      K10
             DEC -13
0286
      K11
             DEC -9
0287
      K12
0288
      K13
             DEC -6
0289
      K14
             DEC -3
             DEC -2
0290
      K15
             DEC -1
0291
      K16
             DEC 0
0292
      K17
0293
             DEC 0
      K18
0294
      K19
             DEC 0
0295
       *
             SPC 5
0296
0297
       *ALTERNATOR LINE SUB ROUTINE
0298
0299
             NOP
0300
       ALT
                            FETCH LINE COUNT
             LDA VC
0301
0302
             ADA AST
                            BEFORE / AFTER LINE START
 0303
             SSA
 0304
             JMP ALTA
 0305
             LDA VO
             ADA AF
 0306
 0307
             SSA
              JMP Q
 0308
              JMP ALTA
 0309
             NOP
 0310 Q
                            FETCH MODIFIER
             LDA TEMP1.I
 0311
                            FETCH QUADRANT COUNTER
              LDB CT2
 0312
                            ? IN QUADRANT 0
              CPB D0
 0313
                                 YES-GO TO QM SECTOR
              JMP Q0
 0314
                             ? IN QUADRANT 1
 0315
              CPB D1
                                 YES-GO TO Q1 SECTOR
              JMP Q1
 0316
                             ? IN QUADRANT 2
              CPB D2
 0317
                                 YES-GO TO Q2 SECTOR
              JMP Q2
 0318
                             ? IN QUADRANT 3
 0319
              CPB D3
                                 YES- GO TO Q3 SECTOR
 0320
              JMP 03
                                 NOT FAULT CONDITION!
              HLT 70B
 0321
                             FETCH KNEE MODR POINTER
       00
              LDB CT1
 0322
```

Figure 1 (Continued)

```
0323
            CPB D18
                           REACHED END OF QUADRANT ?
0324
            JSB QC
                                YES-GO UPDATE QUAD COUNTER
0325
            CMA, INA
                                NO-MAKE MODR -VE
            ADA H4M
0326
0327
            STA H4M
0328
      UP
             ISZ CT1
                            INC MODE POINTER
0329
             JMP *+1
0330
             ISZ TEMP1
                            INC BUFFER PTR
0331
             JMP ALT, I
                           EXIT
0332
      QC
            NOP
0333
             ISZ CT2
                            INCREMENT QUAD CTR
0334
             JMP QC,I
0335
             JMP QC, I
                           RETURN
0336
      Q1
            LDB CT1
                           FETCH MODR COUNTER
0337
            CPB DØ
                            REACHED END OF QUADRANT ?
0338
             JSB QC
                                YES-GOINC QUAD COUNTER
0339
             CMA, INA
                                NO-MAKE MODR -VE
0340
             ADA H4M
0341
             STA H4M
      DOMN
0342
            LDB CT1
0343
             ADB DM1
                            DECREMENT COUNTER
0344
             STB CT1
0345
             LDA TEMP1
                            FETSH MODR BUFFER PTR
0346
             ADA DMI
                            DECREMENT
0347
             STA TEMP1
0348
             JMP ALT, I
0349
      Q2
             LDB CT1
                            FETCHNMODR COUNTER
0350
             CPB D18
                            REACHED END OF QUADRANT
0351
                                YES GO INC QUAD COUNTER
             JSB QC
0352
             ADA H4M
0353
             STA H4M
0354
             JMP UP
                            GO INC MODR CTR & PTR
0355
      Q3
             LDB CT1
                            FETCH MODE CTE
0356
             CPB D0
                            REACHED END OF QUADRANT ?
0357
             JMP *+4
0358
             ADA H4M
0359
             STA H4M
0360
             JMP DOWN
                            GO DECREMENT MODR CTR & PTR
0361
             CLA
                            GET ZERO & LOAD INTO-
0362
             STA CT2
                             QUAD CTR TO RESET
0363
             JMP *-5
0364
      ALTA
            CLA
0365
             STA H4M
             JMP ALT,I
0366
0367
0368
      *****CONSTANTS
0369
0370
      TEMP1 NOP
0371
             NOP
0372
             NOP
0373
             NOP
0374
      CT1
             NOP
0375
      CT2
             NOP
0376
      ASD
             DEF LØ
```

Figure 1 (Continued)

```
0377 L0
            DEC 0
0378 L1
            DEC 1
0379
     L2
            DEC 2
0380
     L3
            DEC 3
0381
     L4
            DEC
0382
     L5
            DEC 4
0383
            DEC 5
     L6
0384 L7
            DEC 6
0385
     L8
            DEC 6
0386
     L9
            DEC 7
0397
     L10
            DEC 7
0388
            DEC 8
     L11
0389
      L12
            DEC 8
0390
      L13
            DEC 9
0391
      L14
            DEC
0392
      L15
            DEC 10
0393
     L16
            DEC 10
0394 L17
            DEC 10
            DEC 10
0395 L18
0396
     L19
            DEC 10
0397
0398
            SPC 5
0399
      ж
0400
      *FAMILY 2:FADE IN/OUT
0401
0402
      FS
            NOP
0403
            LDA VC
8404
            ADA FST
0405
                           +/-: BEFORE/AFTER FADE START?
            SSA
0406
            JHP FSA
                            -VE:BEFORE
0407
            LDA VC
0408
            ADA FSE
                           +/-: IN/BEYOND ZONE OF FADE START
0409
            SSA
0410
            JMP FSB
                            -VE: IN ZONE
0411
            LDA VC
                            +VE:BEYOND (NORMAL)
0412
            ADA FO
0413
            SSA
                           +/-: BEFORE/AFTER FADE OUT ZONE?
0414
            JMP FS. I
                            -VE:BEFORE (NORMAL)
0415
                            +VE:AFTER FADE OUT ZONE
            LDA VC
0416
            ADA FE
0417
            SSA
                           +/-: IN/BEYOND FADE OUT ZONE?
0418
            JMP FSC
                            -VE: IN ZONE
0419
            SPC 1
0420 FSA
                            +VE:BEYOND:NO LINE
            CLA
0421
            STA HSM
0422
            STA H6M
0423
            STA H7M
0424
            JMP FS. I
0425
            SPC 1
0426 FSB
            JSB FMOD
0427
             ISZ FM
                           INCREMENT POINTER
0428
            JMP FS,I
                           EXIT
0429
            JMP FS. I
                           EXIL
0430 FSC
            JSB FMOD
                           GO-MODIFY AMPLITUDE
```

Figure 1 (Continued)

```
0431
            LDB FM
0432
            ADA DM1
                           DECREMENT MODIFIER
0433
            STB FM
0434
            JMP FS. I
9435
            SPC 1
0436
     FMOD
           HOP
0437
            LDA FM
                           FETCH FADE MODIFIER
                           MOD. AMPLITUDE OF LINE
0438
            ADA AMP5
0439
            SSA, RSS
                           IS IT -VE?
0440
            JMP *+2
                             NO: +VE: HOLD
0441
            CLA
                             YES: - VE: SET AMPLITUDE
            STA AMP5M
0442
0443
            LDA FM
0444
            ADA AMP6
0445
            SSA, RSS
            JMP *+2
0446
0447
            CLA
0448
            STA AMP6M
0449
            LDA FM
0450
            ADA AMP7
0451
             SSALRSS
             JMP *+2
0452
0453
            CLA
0454
            STA AMP7M
0455
             JMP FMOD, I
0456
             SPC 5
0457
      *SINGLE LINE
0458
0459
0460
      SL
             NOP
0461
             LDA VC
0462
             ADA SS
0463
             SSA
                           BEFORE/AFTER START OF LINE?
0464
             JMP *+5
                             -VE:BEFORE (NO LIND)
0465
             LDA VC
                             +VE:AFTER
0466
             ADA SF
                           IN/BEYOND LINE ZONE?
0467
             SSA
0468
             JMP *+4
0469
                             +VE:BEYOND:NO LINE
             CLB
0470
             STB AMP8M
                            SET AMPL. TO ZERO
0471
             JMP SL.I
                            EXIT
0472
             LDB AMP8
             STB AMP8M
                            SET AMPL, TO NORMAL
0473
             JMP SL.I
0474
0475
             SPC 5
0476
0477
      *THRESHOLD SUB-ROUTINE
0478
0479
      **SET THRESHOLD LEVEL BITS 0-3, IN SWITCH REGISTER
      **TO CHANGE DURING 'GRAM GENERATION,
0480
0481
      **MAKE SW. REG. BIT 15 = '1'
0482
0483
      Т
             NOP
0484
             CMB, INB
                            MAKE -VE
```

Figure 1 (Continued)

```
ADD TO POINT LEVEL
            ADB 0000
0485
                           -VE ? (ABOVE/BELOW THRESH. LEVEL ?)
0486
            SSB
0497
            JMP *+3
                             BELOW
                             ABOVE - FETCH MAX INTENSITY
            LDA MAX
0488
                           EXIT
            JMP T.I
0489
                           FETCH MIN INTENSITY
0490
            LDA MIN
             JMP T. I
0491
0492
             OCT 000000
0493 MIN
             SPC 5
0494
0495
      *FREQUENCY & TIME MARKS
0496
0497
      OVT
             NOP
0498
0499
             CLA
             OTA 16B,C
0500
0501
             STC 168
0502
             LDA IN
0503
             JSB OUT
             LDA RPV
0504
             JSB OUT
0505
             LDA VCII
0506
             ADA DM35
0507
             JSB OUT
0508
             LDA VCI2
0509
             JSB OUT
0510
             LDA RPH
0511
             JSB OUT
0512
0513
             LDA HCII
0514
             ADA DM66
             JSB OUT
 0515
             LDA HCI2
 0516
             JSB OUT
 0517
             LDA DM35
 0518
             STA VC1
 0519
             LDA HCØ
 0520 FC
             ADA DM66
 0521
              STA HC
 0522
 0523
             LDA HCØ
 0524
              STA HCC
       FCF
              LDB HC
 0525
 0526
              CPB HCC
              JMP *+4
 0527
              LDA MIN
 0528
              JSB OUT
 0529
              JMP *+6
 0530
              LDA MAX
 0531
              JSB OUT
 0532
 0533
              LDA HCC
 0534
              ADA D100
 0535
              STA HCC
 0536
              ISZ HC
              JMP FCF
 0537
              LDA EOLX
 0538
```

Figure 1 (Continued)

```
0539
             JSB OUT
0540
             ISZ VC1
0541
             JMP FC
0542
            LDA DM66
0543
            STA HC
0544
            LDA VC01
0545
            STA VCC
0546
            LDA VC01
0547
            STA VC1
0548 TCF
            LDA VC1
0549
            CPA VCC
0550
            JMP *+10
0551
            LDA MIN
0552
            JSB OUT
0553
            LDA EOLX
            JSB OUT
0554
0555
            LDA DM66
0556
            STA HC
0557
            ISZ VC1
0558
            JMP TCF
0559
            JMP OVT. I
0560 TC
            LDA MAX
0561
            JSB OUT
0562
            ISZ HC
0563
            JMP TC
0564
            LDA EOLX
0565
            JSB OUT
0566
            LDA DM66
0567
            STA HC
0568
            LDA VCC
0569
            ADA D120
0570
            STA VCC
0571
            ISZ VC1
0572
            JMP TCF
0573
            JMP OVT, I
0574
      *CONSTANTS
0575
0576
0577
      DM35
            DEC -35
0578 DM66
            DEC -66
0579 D120
            DEC 120
0580 HCC
            NOP
0581
0582
            SPC 5
0583
0584
      *BANDWIDTH SUB-ROUTINE
0585
            ORG 12000B
0586
            NÖP
0587
      PN₩
            NOP
0588
            CLB
0589
            LDA GEN3
0590
            SLA
0591
            INB
0592
            ARS, ARS
```

Figure 1 (Continued)

```
0593
             SLA
0594
             INB
0595
             ARS
             SLA
0596
0597
             INB
0598
             ARS, ARS
0599
             SLA
0600
             INB
0601
             SLB
             JMP *+3
0602
             CLE
0603
0604
             JMP *+2
             CCE
0605
             LDA GEN3
0606
             ERA
0607
             STA GEN3
0608
             LDB MSKB
0609
             CPB D3
0610
             JMP *+4
0611
             CPB D7
0612
             JMP *+4
0613
0614
             ADA DM1
0615
             JMP *+2
0616
             ADA DM3
             AND MSKB
0617
0618
             STA W
             LDA GEN3
0619
             AND MAX
0620
0621
             STA W2
             LDA GEN3
0622
0623
             RRR 4
0624
             AND MSKC
             LDB MSKC
0625
             CPB D3
0626
             JMP *+4
0627
0628
             CPB D7
             JMP *+4
0629
             JMP *+4
0630
             ADA DM1
0631
             JMP *+2
0632
0633
             ADA DM3
0634
             STA W3
             JMP PNW. I
0635
0636
       ****CONSTANTS
0637
0638
0639
             SPC 5
0G40
0641
       *10JAN74/JB/19
0642
0643
0644
       *PN20M = PN20 GENERATOR MODIFIED TO AN
0645
       *APPROXIMATE NORMAL DISTRIBUTION
0646
```

Figure 1 (Continued)

```
0647 PNST
            NOP
0648
            CCA
                           SET
             STA GEN1
0649
             STA GEN2
                            PN
0650
                              REGISTERS
             STA GEN3
0651
             CLA
0652
             STA CT15
                            CLEAR
0653
                             PN
             STA CT14
0654
                              COUNTERS
             STA CT13
0655
             STA CT12
0656
             STA CT11
0657
             STA CN10
0658
             STA CT9
0659
0660
             STA CT8
0661
             JMP PNST, I
0662
             NOP
      PNN
             CLB
0663
             LDA GEN2
0664
             RRR 3
0665
0666
             XOR GEN2
0667
             SLA
             JMP *+3
0668
             CLE
0669
             JMP *+2
0670
             CCE
0671
             LDA GEN2
0672
             LDB GEN1
0673
 0674
             ELB.ELB
              ELB, ELB
 0675
              ERA
 0676
              STA GEN2
 0677
              ERB.ERB
 0678
              ERB, ERB
 0679
              ERB
 0680
              STB GEN1
 0681
              LDA GEN2
 0682
                             MASK OUT ALL BUT REOD. BITS
              AND MAX
 0683
              CPA A15
 0684
                                 YES - GO SEE IF MODIFICATION REQD.
              JMP *+16
 0685
              CPA A14
 0686
                                         YES
              JMP *+24
 0687
              CPA A13
 0688
              JMF *+32
 0689
 0690
              CPA A12
              JMP *+40
 0691
              CPA A11
 0692
              JMP *+48
 0693
              CPA A10
 0694
              JMP *+56
 0695
              CPA A9
 0696
              JMP *+64
 0697
              CPA A8
  0698
                                  YES - GO SEE IF MODN. REQD.
              JMP *+72
 0699
                                  NO - EXIT
              JMP PNN.I
 0700
```

Figure 1 (Continued)

```
FETCH "15" COUNTER
            LDB CT15
0701
                              IS THE ONE TO BE 0/P?
             CPB D80
0702
                                YES - GO DO IT
0703
             JMP *+5
                              UPDATE "15" COUNTER
             INB
0704
9795
             STB CT15
0706
             LDA AO
             JMP PNN.I
                              EXIT
0707
             CLB
0708
             STB CT15
0709
             JMP PNN.I
0710
             LDB CT14
0711
             CPB D40
0712
             JMP *+5
0713
             INB
0714
             STB CT14
0715
0716
             LDA AI
0717
             I ANN 9ML
0718
             CLB
0719
             STB CT14
             JMP PNN, I
0720
             LDB CT13
0721
             CPB A16
0722
             JMP *+5
0723
             INB
0724
             STB CT13
0725
             LDA A2
0726
             JMP PNN. I
0727
0728
             CLB
              STB CT13
 0729
              JMP PNN.I
 0730
              LDB CT12
 0731
 0732
              CPB A8
              JMP *+5
 0733
              INB
 0734
              STB CT12
 0735
              LDA A3
 0736
              JMP PNN I
 0737
              CLB
 0738
 0739
              STB CT12
              JMP PNN.I
 0740
              LDB CT11
 0741
              CPB A4
 0742
              JMP *+5
 0743
              INB
 0744
              STB CT11
 0745
 0746
              LDA A4
              JMP PNN.I
 0747
              CLB
 0748
              STB CT11
 0749
 0750
               JMP PNN, I
 0751
              LDB CN10
 0752
               CPB A2
 0753
               JMP *+5
               INB
 0754
```

Figure 1 (Continued)

```
0755
             STB CN10
0756
             LDA AS
             JMP PNN.I
0757
0758
             CLB
0759
             STB CN10
0760
             JMP PNN.I
             LDB CT9
0761
0762
             CPB A3
0763
             JMP *+4
0764
             INB
             STB CT9
0765
             JMP PNN.I
0766
             CLB
0767
0768
             STB CT9
0769
             LDA A6
             INH PHH. I
0770
             LDB CT8
0771
             CPB A5
0772
0773
             JMP *+4
0774
             INB
0775
             STB CT8
0776
             JMP PNN.I
             CLB
0777
             STB CT8
0778
             LDA A7
0779
             JMP PNN.I
0780
0781
       ****CONSTANTS ETC.
0782
0783
             DEC 0
0784
       AØ
             DEC 1
0785
       A1
             DEC 2
0786
       A2
              DEC 3
0787
       A3
0788
              DEC 4
       Ĥ4
0789
       A5
              DEC 5
0790
       A6
              DEC 6
              DEC 7
0791
       A7
 0792
              DEC 8
       A8
 0793
       Α9
              DEC 9
 0794
       A10
              DEC 10
 0795
       A11
              DEC 11
 0796
       A12
              DEC 12
 0797
       A13
              DEC 13
 0798
       A14
              DEC 14
 0799
       A15
              DEC 15
 0800
       A16
              DEC 16
 0801
       GEN1
              NOP
 0802
       GEN2
              NOP
 0803
       CT15
              NOP
 0804
       CT14
              NOP
              NOP
 0805
       CT13
              NOP
 0806
       CT12
              NOP
 0807
        CT11
              NOP
 0808
       CN10
```

Figure 1 (Continued)

```
0809 CT9
            NOP
0810 CT9
            NOP
            DEC 40
0811 D40
0812
      D80
            DEC 80
0813
      ж
            SKP
0814
0815
      ж
      *LINE INTEGRATION ROUTINE
0816
0817
             ORG 3100B
0818
             NOP
0819
      ED2
0820
             LDA HCO
             STA F/HC
0821
             LDA EF
0822
             STA EF1
0823
             CLB
0824
             DIV D3
0825
             STA EF1/3
0826
             CLB
0827
                           FIND 2ND SUB-HARMONIC
             MPY D2
0828
             STA EF2/3
0829
             LDA EF
0830
             CLB
0831
                            FIND 1ST SUB HARMONIC
             DIV D2
0832
             STA EF1/2
0833
0834
             CLB
                            FIND HARMONIC
             MPY D3
 0835
             STA EF3/2
 0836
             LDA EF
 0837
             CLB
 0838
             MPY D2
 0839
             STA EF2
 0840
 0841
             LDA EF
             CLB
 0842
 0843
             MPY D3
 0844
             STA EF3
 0845
             SPC 1
 0846
             LDB S1D
             STB S1T
 0847
             LDB S2D
 0848
             STB S2T
 0849
             LDB S3D
 0850
              STB S3T
 0851
              LDB S4D
 0852
              STB S4T
 0853
              LDB S5D
 0854
              STB S5T
 0855
              LDR SGD
 0856
              STB S6T
 0857
              LDB S7D
 9858
 0859
              STB S7T
 0860
              SPC 1
              LDA FL
 0861
              INA
 0862
```

Figure 1 (Continued)

```
0863
            CMA, INA
                           SET COUNTER
0864
            STA CNT
0865
     CLR
            CLA
0866
            STA SIT.I
0867
            STA S2T, I
0868
            STA S3T, I
0869
            STA S4T.I
            STA SST.I
0870
0871
            STA S6T.I
0872
            STA S7T.I
0873
             ISZ S1T
0874
             ISZ S2T
0875
             ISZ S3T
0876
             ISZ S4T
0877
             ISZ S5T
0878
             ISZ S6T
0879
             ISZ S7T
                            INCREMENT CTR.
0880
             ISZ CHT
                            RETURN & CLEAR REMAINDER
             JMP CLR
0881
             JSB PNSTD.I
0882
0893
             SPC 1
0884
      STRT3 LDA VCL
             ADA VCØ
                            CONVERT TO LINE COUNT
0885
             STA VCL2
                            =END OF INTEGRATION BLOCK
0886
0887
             LDA TL
                            FETCH BLOCK LENGTH
0888
             CMA, INA
0889
             ADA VCL2
                            =START OF INTEGRATION BLOCK
0890
             STA VCL1
0891
             CLB
                            FETCH BLOCK WIDTH
             LDA FL
0892
0893
             DIV D2
             CMA, INA
0894
                            HALF BLOCK WIDTH(-VE)
0895
             STA FL/2
             LDA F/HC
0896
0897
             ADA FL/2
0898
             STA FOON
                            FETCH 1/3RD HARM.
0899
             LDA EF1/3
0900
             ADA FCON
                            CONVERT TO CELL NUMBER
0901
             STA HL1
                            FETCH 1/2 HARM.
             LDA EF1/2
9902
             ADA FOON
0903
0904
             STA HL2
             LDA EF2/3
0905
0906
             ADA FOON
0907
             STA HL3
0908
             LDA EF
             ADA FOON
0909
0910
             STA HL4
0911
             LDA EF3/2
0912
             ADA FOON
             STA HL5
0913
0914
             LDA EF2
0915
             ADA FOON
0916
             STA HL6
```

Figure 1 (Continued

Was a service of the service of the

```
LDA EF3
0917
            ADA FCON
0918
            STA HL7
0919
0920
            LDB HC0
            STB HC
0921
            LDB VC0
0922
                           SET LINE COUNTER
            STB VC
0923
            NOP
0924
            NOP
0925
            LDA VC
      C۷
0926
             CMA, INA
0927
                            VCL1-VC
             ADA VCL1
0928
                            VCL1>VC ?
             SSA, RSS
0929
                              +VE:YES:BEFORE STARRT OF BLOCK
             JMP HOL
0930
                              -VE:NO:AFTER STRT OF BLOCK
             LDA VC
0931
             CMA, INA
0932
                            VCL2-VC
             ADA VCL2
0933
                            VCL2>VC ?
             SSA
0934
             JMP AVD. I
0935
0936
             SPC 1
             LDA EF1/3
0937
             ADA DM120
 0938
                            IS EF1/3 < 12HZ ?
             SSA
 0939
                               YES - TRY NEXT
             JMP *+2
 0940
                              NO - GO TO SEARCH SUB
              JMP CSIA
 0941
             LDA EF1/2
 0942
             ADA DM120
 0943
                             IS EF1/2 < 12HZ ?
              SSA
 0944
              JMP *+2
 0945
              JMP CS2A
 0946
              LDA EF2/3
 0947
              ADA DM120
 0948
 0949
              SSA
                              YES-GO TO ED.FREQ.SEARCH
              JMP CS4A
 0950
                              NO - @GO TO SEARCH SUB
              JMP CS3A
 0951
 0952
              NOP
              SPC 1
 0953
        CSIA
              LDB SID
 0954
              STB SIT
  0955
              LDB FL
  0956
               INB
  0957
               CMB, INB
  0958
               STB CNT
  0959
                              FETCH CELL COUNT
              LDB HC
        CSI
  0960
                              MAKE -VE
               CMB, INB
  0961
                              ADD TO FIRST LINE POSITION
               ADB HL1
  0962
                              REACHED THIS POSITION YET ?
               SSB,RSS
  0963
                                NO:BEFORE START
               JMP *+2
  0964
                                YES: INTO BLOCK
               JMP *+3
  0965
                              GO TO HOISE ONLY ROUTINE
  0966
               JSB NO4
                              RETURN FOR FURTHER TEST
               JMP CS1
  0967
                              GO TO INTEGRATING ROUTINE
               JSB NO2
  0968
               SPC 1
  0969
  0970
        CS2A
               LDB S2D
```

Figure 1 (Continued)

0971 0972 0973 0974 0975 0976 0977 0978 0979 0980 9981	CS2	STB S1T LDB FL INB CMB, INB STB CNT LDB HC CMB, INB ADB HL2 SSB, RSS JMP *+2 JMP *+3 JSB NO4	SET BUFFER POINTER FETCH BLK WIDTH MAKE -VE SET COUNTER
0982 0983 0984 0985 0986 0987 0988 0989 0990	CS3A	JMP CS2 JSB NO2 SPC 1 LDB S3D STB S1T LDB FL INB CMB.INB STB CNT	
0992 0993 0994 0995 0996 0997 0998 0999		LDB HC CMB, INB ADB HL3 SSE, RSS JMP *+2 JMP *+3 JSB NO4 JMP CS3 JSB NO2	

Figure 1 (Continued)

Appendix B

Display System Selection (U)

- Reference: (a) "State-of-the-Art Summary Candidate Display Systems for the Integrated Undersea Surveillance System" (U) (NRL Background Document Prepared for PME-124, June 1976) (S).
 - (b) Display Subsystem Recommendations for the Operator/ Machine Interaction Program (U) - NRL Report dtd 1 Dec 1976 (S).

I. Background

Although display system selection was determined ultimately by funding constraints, a considerable effort in comparative evaluation and selection of displays was expended and reported on in references (a) and (b). Reference (a) is a comprehensive study of several different display requirements, including large screen tactical displays. Reference (b) focuses on specific requirements for the operator-interactive signature formation effort.

This appendix summarizes the findings and recommendations under reference (b) only. For a detailed understanding of the selection process, refer to references (a) and (b).

II. Overview of Requirements

The general requirements for any candidate display system were:

. Flexibility

.Must be capable of displaying:

- a. lofargrams with varying bandwidths and resolutions
- b. automatic line integrations
- c. A scan
- d. stacked A scan
- e. ambiguity functions

. Long Term Viewing Suitability

Factors contributing to operator misinterpretation or fatigue such as flicker, noise, low brightness or contrast, focusing inaccuracies must be minimal.

. Adequate Resolution/Data Density

Within the limits of human visual acuity, the number of displayable points was to match the frequency resolution of the FFT. A range of between 1000 and 3000 points on both x and y axes was considered. A minimum of 8 levels of intensity were required for any point written.

. Interactive Capability

Any one of a number of interactive devices (e.g., light/sonic pens, potentiometer devices, function keys, etc.) were basically acceptable. The major requirement was that the interactive system be simple in operation and not require extensive manual entry by the operator.

. Self Contained

A complete graphics display system was required, one which could be interfaced directly to the NRL computer. Development of a display subsystem, per se, was never contemplated. Image refresh, interactive peripheral interface, character and vector generation were to be features of the display controller.

Mature Technology

The display system had to be commercially available with no system hardware or software development required.

III. Specific Display Characteristics

- . Raster Scan CRT
- . Minimum 512 x 512 resolvable elements
- . Monochrome with gray scale
- . Local refresh with computer interface
- . Local intelligence
- . Keyboard, function keys, joystick or trackball
- . Minimum 9" horizontal viewing axis

. Raster_Scan CRT

Raster scan was determined to be more suitable for the type of high-data density display (principally lofargrams) required. The constant storage requirement of a raster scan system was expected to simplify display programming significantly.

. Minimum 512 x 512 Resolvable Elements

Although our preference was to match display resolution to analyzer resolution (i.e., about 1500 points in the horizontal direction for lofar displays), the cost constraints on the program forced us to accept a loss in minimum detectable signal of .5 to 1 dB for each halving of resolution.

. Monochrome With Gray Scale

Color as a means of encoding signal amplitude was rejected because of the limited range available before psycho-p ysical problems in recognition are encountered. Amplitude variations with time could be most confusing to an operator. (A detailed study of the relative merits of color vs gray scale was beyond the scope of this study. (References (a) and (b) give considerably more detail and cite other studies). The range of quantizations considered was from six bits (64 levels) to three bits (8 levels). Since work done by several large corporations revealed that there is no significant loss in weak signal detection when quantization is reduced to three bits (8 levels) for a time-frequency display, this bit format was accepted. It may be possible to reduce bit requirements further.

Local Refresh With Computer Interface

The size of the host computer, (HP-2100A, 32K words) necessitates a large refresh memory associated with the display itself. Computer interface must be of the full-duplex 16-bit parallel register design so as to be compatible with H/P or DEC manufactured computers.

. Local Intelligence Requirements

- . Display related operations can be accomplished at a level above machine language
- . End point vector and conic generator for simple graphics specification
- . A hardware character generator with a minimum of 64 ASCII characters
- Scaling ability
- . Hardware scrolling
- . Status and control information for peripherals
- . Selective erase
- . Ability to recognize interactive inputs
- . Independent image overlay

. Keyboard, Function Keys, Joystick

The requirement is that the interaction of the operator with the display must be both simple and minimal. The keyboard must also function in a local mode, not requiring intervention of the host computer.

Minimum 9" Horizontal Viewing Axis

This allows lofargrams to be displayed without frequency axis compression.

III. Comparison of Candidate Displays

A comparison of four candidate displays is given in Table 3-1. Detailed comparison is made in reference (b).

IV. Implementation Candidate

The system best meeting the technical and cost requirements was the RAMTEK 9300 Graphic Display System. A detailed description of the RAMTEK 9300 is given in reference (b).

Table 3

SYSTEM	512 x 512	≤ Gray	Color	Local	LOCAL INTELLIGENCE				
	Resolvable Elements	Lead	Available	Refresh w/ PDP-11 I/F	Vector Conics	Char Gen.	Instr. Set	Hardware Scaling	Han Sci
Comtal 30SA	x	х	x	x ⁽¹⁾					
omtal 65SA	x	х		x ⁽¹⁾					
ydin 5214A	x	x	х	x	x	x	х	(2)	
Ramtek 9300	x	x	х	x	x	х	х	х	
•									
			,						

Table 3-I. Comparison of Candidate Display Systems

ELLIGENCE								Min. 9"	
ware ing	Hardware Scrolling		Access re- fresh memory	Separate over- lay channels	Logical/Arith. functions	Gray level windowing	Keyboard	Viewing	
		x	Х	x		x		x	
		x	x	x		x		x	
2)	х	x	x		X(3)	x	x	x	
ζ.	х	x	x	x	x	x	х	x	
				}					

CONFIDE

B5 (Page B6 Blank)

7

This page h

CONFIDENTIAL

Systems

e over- nnels	Logical/Arith.	Gray level	Keyboard	Min. 9" Horiz. Viewing Axis	Est. Cost K\$ (4)		Notes
! :	ļ	x		x	26	(1)	Would need sepa-
· !		x		x	51		rate interface for keyboard
	x ⁽³⁾	x	x	x	45		since not avail-
	X	X	X	X	37	(2) (3) (4)	able by manufacturer. By software Limited to or- ing or erase ones. Estimated cost for system con- figured with available options and computer interface needed. Computer costs
							are not included (see text).

CONFIDENTIAL

UNCLASSIFIED

(This page is unclassified)

UNITED STATES GOVERNMENT Memorandum

7100-032

DATE:

26 February 2004

REPLY TO

ATTN OF:

Burton G. Hurdle (Code 7103)

SUBJECT:

REVIEW OF REF (A) FOR DECLASSIFICATION

TO:

Code 1221.1

REF:

(a) "Operator-Interactive Signature Formation for Acoustic Undersea Surveillance Systems" (U), William P. Morrogh, Acoustics Division, NRL Memo Report

3625, October 1977 (C)

- 1. Reference (a) describes an exploratory development to systematically organize signals received on Undersea Surveillance Systems (including several reception locations) to identify the signatures of ships and other sources. The method has not been completed or tested.
- 2. The technology and equipment of reference (a) have long been superseded. The current value of these papers is historical

3. Based on the above, it is recommended that reference (a) be declassified and released with no restrictions

NRL Code 7103

CONCUR:

dward R. Franchi 3/1/2004

E.R. Franchi

Superintendent, Acoustics Division

CONCUR:

Smallword 3/3/0#

NRL Code 1221.1